Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 819
Filtrar
1.
Viral Immunol ; 37(3): 159-166, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38588555

RESUMO

The high global prevalence of hepatitis B and hepatitis C and the poor prognosis of hepatitis B and hepatitis C-associated hepatocellular carcinoma (HCC), necessitates the early diagnosis and treatment of the disease. Recent studies show that cell-to-cell communication via extracellular vesicles (EVs) is involved in the HCC progression. The objective of the following study was to explore the role of EVs in the progression of viral-induced HCC and investigate their potential for the early diagnosis of cancer. First, the mRNA derived from EVs of HCC patients was compared to the mRNA derived from EVs from the healthy controls. Expression analysis of ANGPTL3, SH3BGRL3, and IFITM3 genes from the EVs was done. Afterward, to confirm whether hepatocytes can uptake EVs, HuH7 cells were exposed to EVs, and the expression analysis of downstream target genes (AKT, TNF-α, and MMP-9) in Huh7 cells was done. Transcriptional analysis showed that in the EVs from HCC patients, the expression levels of ANGPTL3, SH3BGRL3, and IFITM3 were significantly increased by 2.62-, 4.3-, and 9.03-folds, respectively. The downstream targets, AKT, TNF-α, and MMP-9, also showed a considerable change of 4.1-, 1.46-, and 5.05-folds, respectively, in Huh7 cells exposed to HCC EVs. In conclusion, the following study corroborates the role of EVs in HCC progression. Furthermore, the significant alteration in mRNA levels of the selected genes demonstrates their potential to be used as possible biomarkers for the early diagnosis of HCC.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Carcinoma Hepatocelular , Vesículas Extracelulares , Hepatite B , Hepatite C , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/genética , Metaloproteinase 9 da Matriz/metabolismo , Proteínas Proto-Oncogênicas c-akt , Fator de Necrose Tumoral alfa/metabolismo , Hepatite C/genética , Biomarcadores/metabolismo , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/patologia , RNA Mensageiro/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteína 3 Semelhante a Angiopoietina
3.
BMC Cancer ; 24(1): 449, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605332

RESUMO

BACKGROUND: While surgical resection remains the primary treatment approach for symptomatic or growing meningiomas, radiotherapy represents an auspicious alternative in patients with meningiomas not safely amenable to surgery. Biopsies are often omitted in light of potential postoperative neurological deficits, resulting in a lack of histological grading and (molecular) risk stratification. In this prospective explorative biomarker study, extracellular vesicles in the bloodstream will be investigated in patients with macroscopic meningiomas to identify a biomarker for molecular risk stratification and disease monitoring. METHODS: In total, 60 patients with meningiomas and an indication of radiotherapy (RT) and macroscopic tumor on the planning MRI will be enrolled. Blood samples will be obtained before the start, during, and after radiotherapy, as well as during clinical follow-up every 6 months. Extracellular vesicles will be isolated from the blood samples, quantified and correlated with the clinical treatment response or progression. Further, nanopore sequencing-based DNA methylation profiles of plasma EV-DNA will be generated for methylation-based meningioma classification. DISCUSSION: This study will explore the dynamic of plasma EVs in meningioma patients under/after radiotherapy, with the objective of identifying potential biomarkers of (early) tumor progression. DNA methylation profiling of plasma EVs in meningioma patients may enable molecular risk stratification, facilitating a molecularly-guided target volume delineation and adjusted dose prescription during RT treatment planning.


Assuntos
Vesículas Extracelulares , Neoplasias Meníngeas , Meningioma , Humanos , Meningioma/cirurgia , Neoplasias Meníngeas/cirurgia , Estudos Prospectivos , Biópsia Líquida , Biomarcadores , Vesículas Extracelulares/patologia
4.
Int J Nanomedicine ; 19: 3475-3495, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38623080

RESUMO

Purpose: Human umbilical cord mesenchymal stem cell (hucMSC)-derived small extracellular vesicles (sEVs) are natural nanocarriers with promising potential in treating liver fibrosis and have widespread applications in the fields of nanomedicine and regenerative medicine. However, the therapeutic efficacy of natural hucMSC-sEVs is currently limited owing to their non-specific distribution in vivo and partial removal by mononuclear macrophages following systemic delivery. Thus, the therapeutic efficacy can be improved through the development of engineered hucMSC-sEVs capable to overcome these limitations. Patients and Methods: To improve the anti-liver fibrosis efficacy of hucMSC-sEVs, we genetically engineered hucMSC-sEVs to overexpress the anti-fibrotic gene bone morphogenic protein 7 (BMP7) in parental cells. This was achieved using lentiviral transfection, following which BMP7-loaded hucMSC-sEVs were isolated through ultracentrifugation. First, the liver fibrosis was induced in C57BL/6J mice by intraperitoneal injection of 50% carbon tetrachloride (CCL4) twice a week for 8 weeks. These mice were subsequently treated with BMP7+sEVs via tail vein injection, and the anti-liver fibrosis effect of BMP7+sEVs was validated using small animal in vivo imaging, immunohistochemistry (IHC), tissue immunofluorescence, and enzyme-linked immunosorbent assay (ELISA). Finally, cell function studies were performed to confirm the in vivo results. Results: Liver imaging and liver histopathology confirmed that the engineered hucMSC-sEVs could reach the liver of mice and aggregate around activated hepatic stellate cells (aHSCs) with a significantly stronger anti-liver fibrosis effect of BMP7-loaded hucMSC-sEVs compared to those of blank or negative control-transfected hucMSC-sEVs. In vitro, BMP7-loaded hucMSC-sEVs promoted the phenotypic reversal of aHSCs and inhibited their proliferation to enhance the anti-fibrotic effects. Conclusion: These engineered BMP7-loaded hucMSC-sEVs offer a novel and promising strategy for the clinical treatment of liver fibrosis.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Animais , Camundongos , Humanos , Células Estreladas do Fígado/patologia , Camundongos Endogâmicos C57BL , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/terapia , Cirrose Hepática/metabolismo , Fibrose , Vesículas Extracelulares/patologia , Células-Tronco Mesenquimais/metabolismo , Cordão Umbilical , Proteína Morfogenética Óssea 7/genética , Proteína Morfogenética Óssea 7/metabolismo
5.
J Extracell Vesicles ; 13(4): e12425, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38594791

RESUMO

Heterotopic ossification (HO) comprises the abnormal formation of ectopic bone in extraskeletal soft tissue. The factors that initiate HO remain elusive. Herein, we found that calcified apoptotic vesicles (apoVs) led to increased calcification and stiffness of tendon extracellular matrix (ECM), which initiated M2 macrophage polarization and HO progression. Specifically, single-cell transcriptome analyses of different stages of HO revealed that calcified apoVs were primarily secreted by a PROCR+ fibroblast population. In addition, calcified apoVs enriched calcium by annexin channels, absorbed to collagen I via electrostatic interaction, and aggregated to produce calcifying nodules in the ECM, leading to tendon calcification and stiffening. More importantly, apoV-releasing inhibition or macrophage deletion both successfully reversed HO development. Thus, we are the first to identify calcified apoVs from PROCR+ fibroblasts as the initiating factor of HO, and might serve as the therapeutic target for inhibiting pathological calcification.


Assuntos
Vesículas Extracelulares , Ossificação Heterotópica , Humanos , Receptor de Proteína C Endotelial , Vesículas Extracelulares/patologia , Ossificação Heterotópica/patologia , Ossificação Heterotópica/terapia , Matriz Extracelular , Fibroblastos
6.
BMC Med ; 22(1): 138, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528511

RESUMO

BACKGROUND: Synaptic dysfunction with reduced synaptic protein levels is a core feature of Alzheimer's disease (AD). Synaptic proteins play a central role in memory processing, learning, and AD pathogenesis. Evidence suggests that synaptic proteins in plasma neuronal-derived extracellular vesicles (EVs) are reduced in patients with AD. However, it remains unclear whether levels of synaptic proteins in EVs are associated with hippocampal atrophy of AD and whether upregulating the expression of these synaptic proteins has a beneficial effect on AD. METHODS: In this study, we included 57 patients with AD and 56 healthy controls. We evaluated their brain atrophy through magnetic resonance imaging using the medial temporal lobe atrophy score. We measured the levels of four synaptic proteins, including synaptosome-associated protein 25 (SNAP25), growth-associated protein 43 (GAP43), neurogranin, and synaptotagmin 1 in both plasma neuronal-derived EVs and cerebrospinal fluid (CSF). We further examined the association of synaptic protein levels with brain atrophy. We also evaluated the levels of these synaptic proteins in the brains of 5×FAD mice. Then, we loaded rabies virus glycoprotein-engineered EVs with messenger RNAs (mRNAs) encoding GAP43 and SNAP25 and administered these EVs to 5×FAD mice. After treatment, synaptic proteins, dendritic density, and cognitive function were evaluated. RESULTS: The results showed that GAP43, SNAP25, neurogranin, and synaptotagmin 1 were decreased in neuronal-derived EVs but increased in CSF in patients with AD, and the changes corresponded to the severity of brain atrophy. GAP43 and SNAP25 were decreased in the brains of 5×FAD mice. The engineered EVs efficiently and stably delivered these synaptic proteins to the brain, where synaptic protein levels were markedly upregulated. Upregulation of synaptic protein expression could ameliorate cognitive impairment in AD by promoting dendritic density. This marks the first successful delivery of synaptic protein mRNAs via EVs in AD mice, yielding remarkable therapeutic effects. CONCLUSIONS: Synaptic proteins are closely related to AD processes. Delivery of synaptic protein mRNAs via EVs stands as a promising effective precision treatment strategy for AD, which significantly advances the current understanding of therapeutic approaches for the disease.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Vesículas Extracelulares , Humanos , Camundongos , Animais , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Sinaptotagmina I , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Neurogranina/líquido cefalorraquidiano , Disfunção Cognitiva/genética , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/patologia , Atrofia/complicações , Atrofia/patologia , Biomarcadores
7.
Nat Commun ; 15(1): 2292, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38480740

RESUMO

Triple-negative breast cancer (TNBC) is a highly metastatic and heterogeneous type of breast cancer with poor outcomes. Precise, non-invasive methods for diagnosis, monitoring and prognosis of TNBC are particularly challenging due to a paucity of TNBC biomarkers. Glycans on extracellular vesicles (EVs) hold the promise as valuable biomarkers, but conventional methods for glycan analysis are not feasible in clinical practice. Here, we report that a lectin-based thermophoretic assay (EVLET) streamlines vibrating membrane filtration (VMF) and thermophoretic amplification, allowing for rapid, sensitive, selective and cost-effective EV glycan profiling in TNBC plasma. A pilot cohort study shows that the EV glycan signature reaches 91% accuracy for TNBC detection and 96% accuracy for longitudinal monitoring of TNBC therapeutic response. Moreover, we demonstrate the potential of EV glycan signature for predicting TNBC progression. Our EVLET system lays the foundation for non-invasive cancer management by EV glycans.


Assuntos
Vesículas Extracelulares , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/terapia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Biomarcadores Tumorais , Projetos Piloto , Vesículas Extracelulares/patologia , Polissacarídeos
8.
Int J Mol Sci ; 25(6)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38542098

RESUMO

Leptomeningeal metastasis (LM) is a common and fatal complication of advanced non-small cell lung cancer (NSCLC) caused by the spread of malignant cells to the leptomeninges and cerebrospinal fluid (CSF). While intra-CSF methotrexate (MTX) chemotherapy can improve prognosis, eventual MTX resistance deters continued chemotherapy. Recent studies have shown that increased miRNA-21 (miR-21) expression in the CSF of patients with LM after intraventricular MTX-chemotherapy is associated with poor overall survival; however, the molecular mechanisms underlying this resistance are poorly understood. Here, we confirm, in 36 patients with NSCLC-LM, that elevated miR-21 expression prior to treatment correlates with poor prognosis. MiR-21 overexpression or sponging results in a corresponding increase or decrease in MTX resistance, demonstrating that cellular miR-21 expression correlates with drug resistance. MiR-21-monitoring sensor and fluorescent extracellular vesicle (EV) staining revealed that EV-mediated delivery of miR-21 could modulate MTX resistance. Moreover, EVs isolated from the CSF of LM patients containing miR-21 could enhance the cell proliferation and MTX resistance of recipient cells. These results indicate that miR-21 can be transferred from cell-to-cell via EVs and potentially modulate MTX sensitivity, suggesting that miR-21 in CSF EVs may be a prognostic and therapeutic target for overcoming MTX resistance in patients with NSCLC-LM.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Vesículas Extracelulares , Neoplasias Pulmonares , MicroRNAs , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Metotrexato/farmacologia , Metotrexato/uso terapêutico , MicroRNAs/genética , MicroRNAs/uso terapêutico , Vesículas Extracelulares/genética , Vesículas Extracelulares/patologia
9.
Int J Mol Sci ; 25(6)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38542227

RESUMO

Atopic dermatitis, or eczema, is the most common chronic skin disorder, characterized by red and pruritic lesions. Its etiology is multifaceted, involving an interplay of factors, such as the allergic immune response, skin barrier dysfunction, and dysbiosis of the skin microbiota. Recent studies have explored the role of extracellular vesicles (EVs), which are lipid bilayer-delimitated particles released by all cells, in atopic dermatitis. Examination of the available literature identified that most studies investigated EVs released by Staphylococcus aureus, which were found to impact the skin barrier and promote the release of cytokines that contribute to atopic dermatitis development. In addition, EVs released by the skin fungus, Malassezia sympodialis, were found to contain allergens, suggesting a potential contribution to allergic sensitization via the skin. The final major finding was the role of EVs released by mast cells, which were capable of activating various immune cells and attenuating the allergic response. While research in this area is still in its infancy, the studies examined in this review provide encouraging insights into how EVs released from a variety of cells play a role in both contributing to and protecting against atopic dermatitis.


Assuntos
Dermatite Atópica , Vesículas Extracelulares , Hipersensibilidade , Humanos , Dermatite Atópica/patologia , Pele/patologia , Alérgenos , Vesículas Extracelulares/patologia
10.
Int J Mol Sci ; 25(6)2024 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-38542378

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest malignancies worldwide, while it persists as the fourth most prevalent cause of cancer-related death in the United States of America. Although there are several novel therapeutic strategies for the approach of this intensely aggressive tumor, it remains a clinical challenge, as it is hard to identify in early stages, due to its asymptomatic course. A diagnosis is usually established when the disease is already in its late stages, while its chemoresistance constitutes an obstacle to the optimal management of this malignancy. The discovery of novel diagnostic and therapeutic tools is considered a necessity for this tumor, due to its low survival rates and treatment failures. One of the most extensively investigated potential diagnostic and therapeutic modalities is extracellular vesicles (EVs). These vesicles constitute nanosized double-lipid membraned particles that are characterized by a high heterogeneity that emerges from their distinct biogenesis route, their multi-variable sizes, and the particular cargoes that are embedded into these particles. Their pivotal role in cell-to-cell communication via their cargo and their implication in the pathophysiology of several diseases, including pancreatic cancer, opens new horizons in the management of this malignancy. Meanwhile, the interplay between pancreatic carcinogenesis and short non-coding RNA molecules (micro-RNAs or miRs) is in the spotlight of current studies, as they can have either a role as tumor suppressors or promoters. The deregulation of both of the aforementioned molecules leads to several aberrations in the function of pancreatic cells, leading to carcinogenesis. In this review, we will explore the role of extracellular vesicles and miRNAs in pancreatic cancer, as well as their potent utilization as diagnostic and therapeutic tools.


Assuntos
Carcinoma Ductal Pancreático , Vesículas Extracelulares , MicroRNAs , Neoplasias Pancreáticas , Humanos , MicroRNAs/genética , Vesículas Extracelulares/genética , Vesículas Extracelulares/patologia , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/terapia , Carcinoma Ductal Pancreático/diagnóstico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/terapia , Carcinogênese/patologia
11.
J Exp Clin Cancer Res ; 43(1): 81, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38486328

RESUMO

BACKGROUND: Immune-checkpoint inhibitors (ICIs) have showed unprecedent efficacy in the treatment of patients with advanced non-small cell lung cancer (NSCLC). However, not all patients manifest clinical benefit due to the lack of reliable predictive biomarkers. We showed preliminary data on the predictive role of the combination of radiomics and plasma extracellular vesicle (EV) PD-L1 to predict durable response to ICIs. MAIN BODY: Here, we validated this model in a prospective cohort of patients receiving ICIs plus chemotherapy and compared it with patients undergoing chemotherapy alone. This multiparametric model showed high sensitivity and specificity at identifying non-responders to ICIs and outperformed tissue PD-L1, being directly correlated with tumor change. SHORT CONCLUSION: These findings indicate that the combination of radiomics and EV PD-L1 dynamics is a minimally invasive and promising biomarker for the stratification of patients to receive ICIs.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Vesículas Extracelulares , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/tratamento farmacológico , Antígeno B7-H1/uso terapêutico , 60570 , Multiômica , Estudos Prospectivos , Biomarcadores Tumorais , Imunoterapia , Vesículas Extracelulares/patologia
12.
Am J Physiol Lung Cell Mol Physiol ; 326(5): L517-L523, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38469633

RESUMO

Extracellular vesicle (EV) biology in neonatal lung development and disease is a rapidly growing area of investigation. Although EV research in the neonatal population lags behind EV research in adult lung diseases, recent discoveries demonstrate promise in furthering our understanding of the pathophysiology of bronchopulmonary dysplasia and the potential use of EVs in the clinical setting, as both biomarkers and therapeutic agents. This review article explores some of the recent advances in this field and our evolving knowledge of the role of EVs in bronchopulmonary dysplasia.


Assuntos
Displasia Broncopulmonar , Vesículas Extracelulares , Displasia Broncopulmonar/patologia , Displasia Broncopulmonar/metabolismo , Displasia Broncopulmonar/fisiopatologia , Humanos , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/patologia , Animais , Recém-Nascido , Pulmão/patologia , Pulmão/metabolismo , Biomarcadores/metabolismo
13.
Clin Chim Acta ; 557: 117875, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38493944

RESUMO

Breast cancer (BC) is the most prevalent malignancy affecting women worldwide. Although conventional treatments such as chemotherapy, surgery, hormone therapy, radiation therapy, and biological therapy are commonly used, they often entail significant side effects. Therefore, there is a critical need to investigate more cost-effective and efficient treatment modalities in BC. Extracellular vesicles (EVs), including exosomes, microvesicles, and apoptotic bodies, play a crucial role in modulating recipient cell behaviour and driving cancer progression. Among the EVs, exosomes provide valuable insights into cellular dynamics under both healthy and diseased conditions. In cancer, exosomes play a critical role in driving tumor progression and facilitating the development of drug resistance. BC-derived exosomes (BCex) dynamically influence BC progression by regulating cell proliferation, immunosuppression, angiogenesis, metastasis, and the development of treatment resistance. Additionally, BCex serve as promising diagnostic markers in BC which are detectable in bodily fluids such as urine and saliva. Targeted manipulation of BCex holds significant therapeutic potential. This review explores the therapeutic and diagnostic implications of exosomes in BC, underscoring their relevance to the disease. Furthermore, it discusses future directions for exosome-based research in BC, emphasizing the necessity for further exploration in this area.


Assuntos
Neoplasias da Mama , Micropartículas Derivadas de Células , Exossomos , Vesículas Extracelulares , Humanos , Feminino , Exossomos/patologia , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/terapia , Neoplasias da Mama/patologia , Vesículas Extracelulares/patologia
14.
Adv Clin Chem ; 119: 1-32, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38514208

RESUMO

Physiologically, extracellular vesicles (EVs) have been implicated as crucial mediators of immune response, cell homeostasis, angiogenesis, cell differentiation and growth, and tissue repair. In heart failure (HF) they may act as regulators of cardiac remodeling, microvascular inflammation, micro environmental changes, tissue fibrosis, atherosclerosis, neovascularization of plaques, endothelial dysfunction, thrombosis, and reciprocal heart-remote organ interaction. The chapter summaries the nomenclature, isolation, detection of EVs, their biologic role and function physiologically as well as in the pathogenesis of HF. Current challenges to the utilization of EVs as diagnostic and predictive biomarkers in HF are also discussed.


Assuntos
Vesículas Extracelulares , Insuficiência Cardíaca , Humanos , Volume Sistólico/fisiologia , Insuficiência Cardíaca/diagnóstico , Biomarcadores , Fibrose , Vesículas Extracelulares/patologia
15.
Cancer Immunol Immunother ; 73(5): 91, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38554157

RESUMO

BACKGROUND: Accumulation studies found that tumor-associated macrophages (TAMs) are a predominant cell in tumor microenvironment (TME), which function essentially during tumor progression. By releasing bioactive molecules, including circRNA, small extracellular vesicles (sEV) modulate immune cell functions in the TME, thereby affecting non-small cell lung cancer (NSCLC) progression. Nevertheless, biology functions and molecular mechanisms of M2 macrophage-derived sEV circRNAs in NSCLC are unclear. METHODS: Cellular experiments were conducted to verify the M2 macrophage-derived sEV (M2-EV) roles in NSCLC. Differential circRNA expression in M0 and M2-EV was validated by RNA sequencing. circFTO expression in NSCLC patients and cells was investigated via real-time PCR and FISH. The biological mechanism of circFTO in NSCLC was validated by experiments. Our team isolated sEV from M2 macrophages (M2Ms) and found that M2-EV treatment promoted NSCLC CP, migration, and glycolysis. RESULTS: High-throughput sequencing found that circFTO was highly enriched in M2-EV. FISH and RT-qPCR confirmed that circFTO expression incremented in NSCLC tissues and cell lines. Clinical studies confirmed that high circFTO expression correlated negatively with NSCLC patient survival. Luciferase reporter analysis confirmed that miR-148a-3p and PDK4 were downstream targets of circFTO. circFTO knockdown inhibited NSCLC cell growth and metastasis in in vivo experiments. Downregulating miR-148a-3p or overexpressing PDK4 restored the malignancy of NSCLC, including proliferation, migration, and aerobic glycolysis after circFTO silencing. CONCLUSION: The study found that circFTO from M2-EV promoted NSCLC cell progression and glycolysis through miR-148a-3p/PDK4 axis. circFTO is a promising prognostic and diagnostic NSCLC biomarker and has the potential to be a candidate NSCLC therapy target.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Vesículas Extracelulares , Neoplasias Pulmonares , MicroRNAs , Humanos , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Vesículas Extracelulares/genética , Vesículas Extracelulares/patologia , Neoplasias Pulmonares/patologia , Macrófagos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , Microambiente Tumoral
16.
Arq Neuropsiquiatr ; 82(3): 1-8, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38467392

RESUMO

Extracellular vesicles (EVs) are small vesicles released by cells that facilitate cell signaling. They are categorized based on their biogenesis and size. In the context of the central nervous system (CNS), EVs have been extensively studied for their role in both normal physiological functions and diseases like Alzheimer's disease (AD). AD is a neurodegenerative disorder characterized by cognitive decline and neuronal death. EVs have emerged as potential biomarkers for AD due to their involvement in disease progression. Specifically, EVs derived from neurons, astrocytes, and neuron precursor cells exhibit changes in quantity and composition in AD. Neuron-derived EVs have been found to contain key proteins associated with AD pathology, such as amyloid beta (Aß) and tau. Increased levels of Aß in neuron-derived EVs isolated from the plasma have been observed in individuals with AD and mild cognitive impairment, suggesting their potential as early biomarkers. However, the analysis of tau in neuron-derived EVs is still inconclusive. In addition to Aß and tau, neuron-derived EVs also carry other proteins linked to AD, including synaptic proteins. These findings indicate that EVs could serve as biomarkers for AD, particularly for early diagnosis and disease monitoring. However, further research is required to validate their use and explore potential therapeutic applications. To summarize, EVs are small vesicles involved in cell signaling within the CNS. They hold promise as biomarkers for AD, potentially enabling early diagnosis and monitoring of disease progression. Ongoing research aims to refine their use as biomarkers and uncover additional therapeutic applications.


As vesículas extracelulares (VEs) são pequenas estruturas liberadas pelas células que agem na sinalização celular. No sistema nervoso central (SNC), as VEs são estudadas em relação à doença de Alzheimer (DA), um distúrbio neurodegenerativo que cursa com declínio cognitivo e morte neuronal. As VEs podem ser biomarcadores potenciais para a DA devido ao seu papel na progressão da doença. As VEs derivadas de neurônios, astrócitos e células precursoras apresentam alterações na DA, contendo proteínas associadas à patologia da DA, como beta-amiloide (Aß) e tau. Níveis elevados de Aß foram observados nas VEs de neurônios de indivíduos com DA, sugerindo seu potencial como biomarcadores precoces. A análise de tau nas VEs de neurônios ainda é inconclusiva. Além disso, as VEs neurais carregam outras proteínas relacionadas à DA, incluindo proteínas sinápticas. As VEs podem ser promissoras como biomarcadores para o diagnóstico precoce e monitoramento da DA, porém mais pesquisas são necessárias para validar seu uso e explorar aplicações terapêuticas. Em resumo, as VEs são vesículas envolvidas na sinalização celular no SNC, com potencial como biomarcadores para a DA.


Assuntos
Doença de Alzheimer , Vesículas Extracelulares , Humanos , Peptídeos beta-Amiloides/metabolismo , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/patologia , Biomarcadores , Progressão da Doença
17.
Organogenesis ; 20(1): 2313696, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38357804

RESUMO

Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related mortality globally. HCC is highly heterogenous with diverse etiologies leading to different driver mutations potentiating unique tumor immune microenvironments. Current therapeutic options, including immune checkpoint inhibitors and combinations, have achieved limited objective response rates for the majority of patients. Thus, a precision medicine approach is needed to tailor specific treatment options for molecular subsets of HCC patients. Lipid nanovesicle platforms, either liposome- (synthetic) or extracellular vesicle (natural)-derived present are improved drug delivery vehicles which may be modified to contain specific cargos for targeting specific tumor sites, with a natural affinity for liver with limited toxicity. This mini-review provides updates on the applications of novel lipid nanovesicle-based therapeutics for HCC precision medicine and the challenges associated with translating this therapeutic subclass from preclinical models to the clinic.


Assuntos
Carcinoma Hepatocelular , Vesículas Extracelulares , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Medicina de Precisão , Vesículas Extracelulares/patologia , Lipídeos/uso terapêutico , Microambiente Tumoral
18.
Clin Immunol ; 261: 109925, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38310993

RESUMO

BACKGROUND: Inflammatory factors are being recognized as critical modulators of host antitumor immunity in liver cancer. We have previously shown that tumor cell-released LC3B positive extracellular vesicles (LC3B+ EVs) are responsible for malignant progression by dampening antitumor immunity. However, the relationship between LC3B+ EVs and inflammatory factors in the regulation of the liver cancer microenvironment remains unclear. METHODS: Flow cytometry analyses were performed to examine the panel of 12 cytokines, the main source of positive cytokines, and plasma LC3B+ EVs carrying HSP90α in peripheral blood of liver cancer patients. We correlated the levels of plasma IL-6, IL-8 with LC3B+ EVs carrying HSP90α and with prognosis. In vitro culture of healthy donor leukocytes with liver cancer-derived LC3B+ EVs was performed to evaluate the potential effect of blocking HSP90α, IL-6 or IL-8 alone or in combination with PD-1 inhibitor on CD8+ T cell function. We also investigated the potential associations of MAP1LC3B, HSP90AA1, IL6 or IL8 with immunotherapy efficacy using the TCGA databases. RESULTS: In liver cancer patients, plasma IL-6 and IL-8 levels were significantly higher than in healthy controls and associated with poor clinical outcome. In peripheral blood, levels of plasma LC3B+ EVs carrying HSP90α were significantly elevated in HCC patients and positively associated with IL-6 and IL-8 levels, which are predominantly secreted by monocytes and neutrophils. Moreover, LC3B+ EVs from human liver cancer cells promoted the secretion of IL-6 and IL-8 by leukocytes through HSP90α. Besides, we show that the cytokines IL-6 and IL-8 secreted by LC3B+ EVs-induced leukocytes were involved in the inhibition of CD8+ T-cell function, while blockade of the HSP90α on the LC3B+ EVs, IL-6, or IL-8 could enhance anti-PD-1-induced T cell reinvigoration. Finally, patients who received anti-PD-1/PD-L1 immunotherapy with high MAP1LC3B, HSP90AA1, IL6, or IL8 expression had a lower immunotherapy efficacy. CONCLUSIONS: Our data suggest that liver cancer-derived LC3B+ EVs promote a pro-oncogenic inflammatory microenvironment by carrying membrane-bound HSP90α. Targeting HSP90α on the LC3B+ EVs, IL-6, or IL-8 may synergize with anti-PD-1 treatment to enhance the CD8+ T-cell functions, which may provide novel combination strategies in the clinic for the treatment of liver cancer.


Assuntos
Carcinoma Hepatocelular , Vesículas Extracelulares , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/terapia , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Microambiente Tumoral , Citocinas/metabolismo , Imunoterapia , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/patologia
19.
Cells ; 13(4)2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38391949

RESUMO

Glioblastoma (GB) is a rare but extremely aggressive brain tumor that significantly impacts patient outcomes, affecting both duration and quality of life. The protocol established by Stupp and colleagues in 2005, based on radiotherapy and chemotherapy with Temozolomide, following maximum safe surgical resection remains the gold standard for GB treatment; however, it is evident nowadays that the extreme intratumoral and intertumoral heterogeneity, as well as the invasiveness and tendency to recur, of GB are not compatible with a routine and unfortunately ineffective treatment. This review article summarizes the main challenges in the search for new valuable therapies for GB and focuses on the impact that extracellular vesicle (EV) research and exploitation may have in the field. EVs are natural particles delimited by a lipidic bilayer and filled with functional cellular content that are released and uptaken by cells as key means of cell communication. Furthermore, EVs are stable in body fluids and well tolerated by the immune system, and are able to cross physiological, interspecies, and interkingdom barriers and to target specific cells, releasing inherent or externally loaded functionally active molecules. Therefore, EVs have the potential to be ideal allies in the fight against GB and to improve the prognosis for GB patients. The present work describes the main preclinical results obtained so far on the use of EVs for GB treatment, focusing on both the EV sources and molecular cargo used in the various functional studies, primarily in vivo. Finally, a SWOT analysis is performed, highlighting the main advantages and pitfalls of developing EV-based GB therapeutic strategies. The analysis also suggests the main directions to explore to realize the possibility of exploiting EVs for the treatment of GB.


Assuntos
Vesículas Extracelulares , Glioblastoma , Humanos , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Qualidade de Vida , Recidiva Local de Neoplasia/patologia , Temozolomida/uso terapêutico , Vesículas Extracelulares/patologia
20.
Clin Chim Acta ; 556: 117849, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38417779

RESUMO

Colorectal cancer (CRC) is a type of gastrointestinal cancer with high morbidity and mortality rates, and is often accompanied by distant metastases. Metastasis is a major cause of shortened survival time and poor treatment outcomes for patients with CRC. However, the molecular mechanisms underlying the metastasis of CRC remain unclear. Exosomes are a class of small extracellular vesicles that originate from almost all human cells and can transmit biological information (e.g., nucleic acids, lipids, proteins, and metabolites) from secretory cells to target recipient cells. Recent studies have revealed that non-coding RNAs (ncRNAs) can be released by exosomes into the tumour microenvironment or specific tissues, and play a pivotal role in tumorigenesis by regulating a series of key molecules or signalling pathways, particularly those involved in tumour metastasis. Exosomal ncRNAs have potential as novel therapeutic targets for CRC metastasis, and can also be used as liquid biopsy biomarkers because of their specificity and sensitivity. Therefore, further investigations into the biological function and clinical value of exosomal ncRNAs will be of great value for the prevention, early diagnosis, and treatment of CRC metastasis.


Assuntos
Neoplasias Colorretais , Exossomos , Vesículas Extracelulares , Humanos , Neoplasias Colorretais/genética , Neoplasias Colorretais/diagnóstico , RNA não Traduzido/genética , Exossomos/metabolismo , Vesículas Extracelulares/patologia , Transdução de Sinais , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...